
A strategy for better scalability, security, and control for large AtoM installations

https://commons.wikimedia.org/wiki/File:Cell_division_according_to_E._Strasburger_(1875).png

2-site replication with AtoM

https://commons.wikimedia.org/wiki/File:Cell_division_according_to_E._Strasburger_(1875).png
https://creativecommons.org/licenses/by-sa/4.0/

What is 2-site replication?

A deployment strategy:

• One public facing read-only site

• One internal read-write edit site

for staff

• A script that can automatically

copy data from the internal site to

the public site with no downtime

when triggered manually by

internal staff

Advantages of a 2-site deployment
Scalability

• Can enable aggressive caching on the public front-end

• Staff have their own separate site for editing

• Can tune the server parameters of each site differently for best performance

Control

• Staff can choose when records with no publication status (such as authority
records, terms, repository records, etc.) become publicly visible

Security

• Login can be completely disabled in the public-facing site

• Staff edit site can be kept behind firewall, HTTP authentication, and other
security measures

The replication script

https://github.com/artefactual-labs/atom-replication

https://github.com/artefactual-labs/atom-replication
https://github.com/artefactual-labs/atom-replication

Powered by Ansible
Ansible is an open source
tool for software
provisioning, configuration
management, and
application deployment.

It is based around the idea
of “playbooks” which are
simple scripts (written in
YAML) to express
configurations, deployment
steps, and more.

https://blog.knoldus.com/introduction-to-ansible/

https://www.ansible.com/

https://blog.knoldus.com/introduction-to-ansible/
https://www.ansible.com/

What does the replication script do?
Lives on the internal edit site (the source server). When

triggered, the script:

• Copies the ES index (no downtime to reindex the public site)

• Copies the database and loads it into the public site

The replication script does NOT:

• Copy over software files or theme/plugin files. Any

customizations or code changes need to be deployed

separately to both the source (internal) and public

(destination sites)

• Currently handle the uploads and downloads directories. If

your sites are on the same server, you can symlink the

public and internal directories so no replication is needed.

We hope to expand the script in the future to handle these

directories for 2-site deployments on different servers.

Set up and configuration
Install Ansible on your source (i.e. internal read/write) server:

You will need to make sure you have Python installed as well (version
3.5 or newer). It should already be installed in new Ubuntu 18.04
installations but if not:

sudo apt update

sudo apt install software-properties-common

sudo apt-add-repository --yes --update ppa:ansible/ansible

sudo apt install ansible

sudo apt install python3-minimal

python3 –V (this will check the version installed)

Set up and configuration

Install the replication script on your source server using git:

You will also need to make sure that you’ve configured SSH access to
both host sites (source and destination). You’ll find guides online on how
to set up SSH access on Ubuntu if you’ve never done it before!

sudo apt install git

git clone https://github.com/artefactual-labs/atom-replication

cd atom-replication

Set up and configuration
In the replication scripts, edit the hosts file to include the IP address of your
source (internal) and destination (public) AtoM instances.

If both MySQL and Elasticsearch are installed in the same host, put the same
IP address twice. Default contents of the file:

Notice that you’ll want to add the SSH user that Ansible should use for
each host as well.

[atom_sites]

Source site

atom_es_source_site ansible_ssh_host=10.10.10.15 ansible_ssh_user=vagrant

atom_mysql_source_site ansible_ssh_host=10.10.10.15 ansible_ssh_user=vagrant

Destination site

atom_es_destination_site ansible_ssh_host=10.10.10.10 ansible_ssh_user=vagrant

atom_mysql_destination_site ansible_ssh_host=10.10.10.10 ansible_ssh_user=vagrant

Set up and configuration
Finally, we need to configure

the database credentials and

the Elasticsearch index name

and location for both our host

and source sites, in the

group_vars/all file found

in the replication scripts.

Atom source site

atom_source_site:

atom_db_name: "atom"

atom_db_user: "atom-user"

atom_db_password: "ATOMPASSWORD"

atom_db_host: "localhost"

es_source_site:

server: "localhost"

port: "9200"

index: "atom"

Atom destination site

#

The database and ES search will be

#

atom_dest_site:

atom_db_name: "atom_dest"

atom_db_user: "atom_dest"

atom_db_password: "ATOMPASSWORD"

atom_db_host: "localhost"

es_dest_site:

index: "atom_dest" # the Atom index for the destination site

server: "localhost"

port: "9200"

Common values for both servers, defaults should be fine.

replication_path: "/srv/atom-replication"

elasticsearch_repo_path: "/var/lib/elasticsearch/atom-replication"

elasticsearch_repo_name: "atom-replica"

elasticsearch_snapshot_name: "atomsnap"

atom_sync_folder: "{{ replication_path }}/last" # same folder in both servers

Using the script
• Confirm the source/edit site is okay, i.e. the site is up, browse works,

archival descriptions page is okay. If source site is broken, the
destination site will be broken as well after replication!

• Impose a data/edit freeze on the source site to assure nobody is
making changes to the database.

• SSH or log in to your source server, and change to the directory where
the replication script is installed

• Run the replication Ansible playbook!

ansible-playbook -i hosts playbook.yml

Using the script
• After running the script, you should clear the Symfony cache, and

restart PHP-FPM on the destination (i.e. public) site.

php symfony cc

sudo systemctl php7.2-fpm restart

• If you are using an additional caching engine (such as Memcached,
Varnish, etc.) then you should clear that cache as well, to make sure that
the newest updates are shown to your public users.

• Do a quick review of your public site to make sure everything looks
good – remember to clear your browser cache (or test in an incognito
browser window) so you are seeing the newest updates!

See: https://www.accesstomemory.org/docs/latest/admin-manual/maintenance/clear-cache/

https://www.accesstomemory.org/docs/latest/admin-manual/maintenance/clear-cache/

info@artefactual.com

Questions?

