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Feature development process overview

1. Feature idea
2. Technical classification
3. Development preparation
4. Creating a feature
5. Contributing a feature



1. Feature idea

● New archival standard?
● New theme?
● New way to bring data in or out?
● ???



2. Technical classification

● Plugins
● CLI tasks
● Background jobs
● Core features



2. Technical classification

● Plugins <- probably the most common
● CLI tasks
● Background jobs
● Core features



3. Preparation: design

● Think of broad use-cases
● Follow known open standards whenever relevant
● Implement as simply as possible
● Change as little as possible to get the functionality you 

want
● Avoid breaking backwards compatibility
● Run your ideas by the community



3. Preparation: technical

● Read up on Symfony 1.4
● Explore AtoM’s codebase
● Ask questions in the AtoM user forum



4. Developing your feature

● Fork AtoM on GitHub to have your own repository to work 
with

● Follow AtoM coding standards: 
https://wiki.accesstomemory.org/Development/Coding_standard

● Review our wiki page on contributing code:
https://wiki.accesstomemory.org/Development/Contribute_code

● Make sure any third-party code libraries you add are AGPL 
v3 compatible



5. Contributing your feature

1. Submit a pull request on GitHub with your work
2. Respond to feedback in the pull request until the pull 

request’s approved: 
https://wiki.accesstomemory.org/Development/Code_review

3. Fill in a Contributor’s agreement:
https://wiki.accesstomemory.org/Development/Contribute_code
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Symfony 1.4 overview

● Symfony 1.4 is the web application framework AtoM is built 
with

● Symfony follows the MVC (model/view/controller) pattern
● Models represent types of data
● Views represent how data is rendered
● Controllers represent logic that determines what data ends 

up being rendered by the view



Symfony models
● AtoM’s Symfony is using an ORM called Propel

● To define models, data schemas are defined using YAML files

● A CLI tool is run that uses these YAML files as a guideline to generate 

PHP code to that defines model classes

● These classes are referred to as “base” models and aren’t supposed to 

be manually altered

● Model characteristics can be added or overriden by creating child 

classes that extend the base models

● Migrations handle changes between schema versions



Symfony controllers
● There are two main types of controllers: actions and components
● Actions define the behaviour of pages
● Components define logic shared between actions
● Both types of controllers are represented by classes
● Actions extend sfAction (or a child class)
● Components extend sfComponent (or a child class)
● If actions or components are part of a plugin they are given a class name that 

includes the plugin name
● Example: sfRadPluginEditAction



Symfony views
● There are two main types of views: page templates and partials
● Page templates define how an action’s data is rendered
● Partials have multiple uses:

○ They can be used to define how a component’s data is rendered

○ They can be used by page templates to render repeating data

○ They can be used by page templates to encapsulate a complex part of a page

● The use_helper function can be used in page templates to include functions 
intended to be used within templates (for rendering dates and URLs, etc.)



Symfony routing
● AtoM’s routing is largely defined in apps/qubit/config/routing.yml
● Plugins can dynamically add routes as well
● Example: the arRestApiPlugin’s configuration class adds routes 



Symfony debugging/development tools
● The clear cache CLI task is useful during development:

php symfony cc

● Also useful is the CLI task to purge all user-created data:
php symfony tools:purge

● See Steve Breker’s presentation, slide 4, for how to enable debug mode
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Plugin Development Overview
● Plugins can be used to implement optional features as mentioned earlier 

(support for individual archival standards, new themes, etc.)
● Plugins are also used in AtoM to escapsulate functionality (the 

arElasticSearchPlugin plugin for example)
● Plugins can also be used to add new classes that other plugins can share



Plugin directory structure
● Plugins have four optional subdirectories: config, lib, modules, and web
● config is where plugin-related configuration files can be put
● lib is where plugin code libraries, such as plugin-related classes, can be put
● modules is where module-related code can be put
● web is where plugin-related web assets are put



Plugin configuration files
● Plugin configuration files are named using the convention:

<plugin name>Configuration.class.php
● An example: sfRadPluginConfiguration.class.php
● These files define a class named <plugin name>Configuration that 

inherits from Symfony's sfPluginConfiguration class
● These files specify the plugin's name, version, etc.
● These files also can contain plugin initialization logic, etc.



Plugin library files
● Plugin library files are named with the plugin name included in the filename
● An example:

plugins/arOaiPlugin/lib/arOaiPluginComponent.class.php
● This is merely a convention, however
● Any class that is put in the plugin's lib directory will be auto-loaded by AtoM 

once the cache is cleared
● The sfHistoryPlugin plugin is an example of a plugin whose sole 

functionality is encapsulated in a class in the plugin’s lib directory



Plugin modules
● Modules are an organizational unit used in Symfony to encapsulate a bunch of 

files related to a group of application web pages

sfFacebookPlugin
modules

photos
actions

indexAction.class.php
editAction.class.php

templates
indexSuccess.php
editSuccess.php



Enabling/disabling Plugins
● Plugins that consist entirely of plugin code library, put in lib, don't need to be 

explicitly enabled
● Plugins must contain a configuration file in their config subdirectory in order 

to be enabled by an admin
● Enable or disable plugins using the sfPluginAdminPlugin/plugins page
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Task Development Overview
● Tasks are primarily used by advanced users and system administrators
● Tasks add command-line accessible features
● Task examples: cache clearing, bulk import/export, adding administrators, etc.
● Task code can be found in lib/tasks
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Background Job Development Overview
● Jobs are used to perform "heavy lifting" in the background of an AtoM instance
● For example, if a user requests a CSV export of all descriptions the user will be 

informed that the export has started, but won't have to wait for the export to 
complete to get a web page response

● Users can visit a webpage to see the status of their jobs, whether in-progress, 
completed, or failed

● A job is analogous to a pizza delivery order: the doorbell will ring when the pizza 
arrives and when in doubt you can call the pizzaria to enquire about whether 
the pizza's done or not
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Questions?Questions?

info@artefactual.cominfo@artefactual.com


