
AtoM Feature DevelopmentAtoM Feature Development

An intro on how to create and contribute

Steve Breker, May 2017
AtoM Camp SJC



Feature Development 
Process

Feature Development 
Process



Feature development process overview

1. Feature idea
2. Technical classification
3. Development preparation
4. Creating a feature
5. Contributing a feature



1. Feature idea

● New archival standard?
● New theme?
● New way to bring data in or out?
● ???



2. Technical classification

● Plugins
● CLI tasks
● Background jobs
● Core features



2. Technical classification

● Plugins <- probably the most common
● CLI tasks
● Background jobs
● Core features



3. Preparation: design

● Think of broad use-cases
● Follow known open standards whenever relevant
● Implement as simply as possible
● Change as little as possible to get the functionality you 

want
● Avoid breaking backwards compatibility
● Run your ideas by the community



3. Preparation: technical

● Read up on Symfony 1.4
● Explore AtoM’s codebase
● Ask questions in the AtoM user forum



4. Developing your feature

● Fork AtoM on GitHub to have your own repository to work 
with

● Follow AtoM coding standards: 
https://wiki.accesstomemory.org/Development/Coding_standard

● Review our wiki page on contributing code:
https://wiki.accesstomemory.org/Development/Contribute_code

● Make sure any third-party code libraries you add are AGPL 
v3 compatible



5. Contributing your feature

1. Submit a pull request on GitHub with your work
2. Respond to feedback in the pull request until the pull 

request’s approved: 
https://wiki.accesstomemory.org/Development/Code_review

3. Fill in a Contributor’s agreement:
https://wiki.accesstomemory.org/Development/Contribute_code



1010101111010110101010110110110110100101010101010101010101011011010010110101010101010
1010011011011011011011010100101011101101010101010100101101010101010101010101101101100
0101101101001010101010101101101010101010101001010110110101101000010110101010101010101
0100011011011000110111010101010010101101010010010100011110110110110110011011011011000
1100001101101100110101010111010010100011011010101011110101101010101101101101101001010
1010101010101010101101101001011010101010101010100110110110110110110101001010111011010
1010101010010110101010101010101010110110110001011011010010101010101011011010101010101
0100101011011010110100001011010101010101010101000110110110001101110101010100101011010
1001001010001111011011011011001101101101100011000011011011001101010101110100101000110
1101010101111010110101010110110110110100101010101010101010101011011010010110101010101
0101010011011011011011011010100101011101101010101010100101101010101010101010101101101
1000101101101001010101010101101101010101010101001010110110101101000010110101010101010
1010100011011011000110111010101010010101101010010010100011110110110110110011011011011
0001100001101101100110101010111010010100011011010101011110101101010101101101101101001
0101010101010101010101101101001011010101010101010100110110110110110110101001010111011
0101010101010010110101010101010101010110110110001011011010010101010101011011010101010
1010100101011011010110100001011010101010101010101000110110110001101110101010100101011
0101001001010001111011011011011001101101101100011000011011011001101010101110100101000
1101101010101111010110101010110110110110100101010101010101010101011011010010110101010
1010101010011011011011011011010100101011101101010101010100101101010101010101010101101
1011000101101101001010101010101101101010101010101001010110110101101000010110101010101
0101010100011011011000110111010101010010101101010010010100011110110110110110011011011
0110001100001101101100110101010111010010100011011010101011110101101010101101101101101
0010101010101010101010101101101001011010101010101010100110110110110110110101001010111
0110101010101010010110101010101010101010110110111010101001101101101101101101010010101
11011010101010101001011010101010101010101011011011



Symfony 1.4Symfony 1.4



Symfony 1.4 overview

● Symfony 1.4 is the web application framework AtoM is built 
with

● Symfony follows the MVC (model/view/controller) pattern
● Models represent types of data
● Views represent how data is rendered
● Controllers represent logic that determines what data ends 

up being rendered by the view



Symfony models
● AtoM’s Symfony is using an ORM called Propel

● To define models, data schemas are defined using YAML files

● A CLI tool is run that uses these YAML files as a guideline to generate 

PHP code to that defines model classes

● These classes are referred to as “base” models and aren’t supposed to 

be manually altered

● Model characteristics can be added or overriden by creating child 

classes that extend the base models

● Migrations handle changes between schema versions



Symfony controllers
● There are two main types of controllers: actions and components
● Actions define the behaviour of pages
● Components define logic shared between actions
● Both types of controllers are represented by classes
● Actions extend sfAction (or a child class)
● Components extend sfComponent (or a child class)
● If actions or components are part of a plugin they are given a class name that 

includes the plugin name
● Example: sfRadPluginEditAction



Symfony views
● There are two main types of views: page templates and partials
● Page templates define how an action’s data is rendered
● Partials have multiple uses:

○ They can be used to define how a component’s data is rendered

○ They can be used by page templates to render repeating data

○ They can be used by page templates to encapsulate a complex part of a page

● The use_helper function can be used in page templates to include functions 
intended to be used within templates (for rendering dates and URLs, etc.)



Symfony routing
● AtoM’s routing is largely defined in apps/qubit/config/routing.yml
● Plugins can dynamically add routes as well
● Example: the arRestApiPlugin’s configuration class adds routes 



Symfony debugging/development tools
● The clear cache CLI task is useful during development:

php symfony cc

● Also useful is the CLI task to purge all user-created data:
php symfony tools:purge

● See Steve Breker’s presentation, slide 4, for how to enable debug mode



Developing PluginsDeveloping Plugins



Plugin Development Overview
● Plugins can be used to implement optional features as mentioned earlier 

(support for individual archival standards, new themes, etc.)
● Plugins are also used in AtoM to escapsulate functionality (the 

arElasticSearchPlugin plugin for example)
● Plugins can also be used to add new classes that other plugins can share



Plugin directory structure
● Plugins have four optional subdirectories: config, lib, modules, and web
● config is where plugin-related configuration files can be put
● lib is where plugin code libraries, such as plugin-related classes, can be put
● modules is where module-related code can be put
● web is where plugin-related web assets are put



Plugin configuration files
● Plugin configuration files are named using the convention:

<plugin name>Configuration.class.php
● An example: sfRadPluginConfiguration.class.php
● These files define a class named <plugin name>Configuration that 

inherits from Symfony's sfPluginConfiguration class
● These files specify the plugin's name, version, etc.
● These files also can contain plugin initialization logic, etc.



Plugin library files
● Plugin library files are named with the plugin name included in the filename
● An example:

plugins/arOaiPlugin/lib/arOaiPluginComponent.class.php
● This is merely a convention, however
● Any class that is put in the plugin's lib directory will be auto-loaded by AtoM 

once the cache is cleared
● The sfHistoryPlugin plugin is an example of a plugin whose sole 

functionality is encapsulated in a class in the plugin’s lib directory



Plugin modules
● Modules are an organizational unit used in Symfony to encapsulate a bunch of 

files related to a group of application web pages

sfFacebookPlugin
modules

photos
actions

indexAction.class.php
editAction.class.php

templates
indexSuccess.php
editSuccess.php



Enabling/disabling Plugins
● Plugins that consist entirely of plugin code library, put in lib, don't need to be 

explicitly enabled
● Plugins must contain a configuration file in their config subdirectory in order 

to be enabled by an admin
● Enable or disable plugins using the sfPluginAdminPlugin/plugins page



Developing TasksDeveloping Tasks



Task Development Overview
● Tasks are primarily used by advanced users and system administrators
● Tasks add command-line accessible features
● Task examples: cache clearing, bulk import/export, adding administrators, etc.
● Task code can be found in lib/tasks



Developing Background 
Jobs

Developing Background 
Jobs



Background Job Development Overview
● Jobs are used to perform "heavy lifting" in the background of an AtoM instance
● For example, if a user requests a CSV export of all descriptions the user will be 

informed that the export has started, but won't have to wait for the export to 
complete to get a web page response

● Users can visit a webpage to see the status of their jobs, whether in-progress, 
completed, or failed

● A job is analogous to a pizza delivery order: the doorbell will ring when the pizza 
arrives and when in doubt you can call the pizzaria to enquire about whether 
the pizza's done or not



1010101111010110101010110110110110100101010101010101010101011011010010110101010101010
1010011011011011011011010100101011101101010101010100101101010101010101010101101101100
0101101101001010101010101101101010101010101001010110110101101000010110101010101010101
0100011011011000110111010101010010101101010010010100011110110110110110011011011011000
1100001101101100110101010111010010100011011010101011110101101010101101101101101001010
1010101010101010101101101001011010101010101010100110110110110110110101001010111011010
1010101010010110101010101010101010110110110001011011010010101010101011011010101010101
0100101011011010110100001011010101010101010101000110110110001101110101010100101011010
1001001010001111011011011011001101101101100011000011011011001101010101110100101000110
1101010101111010110101010110110110110100101010101010101010101011011010010110101010101
0101010011011011011011011010100101011101101010101010100101101010101010101010101101101
1000101101101001010101010101101101010101010101001010110110101101000010110101010101010
1010100011011011000110111010101010010101101010010010100011110110110110110011011011011
0001100001101101100110101010111010010100011011010101011110101101010101101101101101001
0101010101010101010101101101001011010101010101010100110110110110110110101001010111011
0101010101010010110101010101010101010110110110001011011010010101010101011011010101010
1010100101011011010110100001011010101010101010101000110110110001101110101010100101011
0101001001010001111011011011011001101101101100011000011011011001101010101110100101000
1101101010101111010110101010110110110110100101010101010101010101011011010010110101010
1010101010011011011011011011010100101011101101010101010100101101010101010101010101101
1011000101101101001010101010101101101010101010101001010110110101101000010110101010101
0101010100011011011000110111010101010010101101010010010100011110110110110110011011011
0110001100001101101100110101010111010010100011011010101011110101101010101101101101101
0010101010101010101010101101101001011010101010101010100110110110110110110101001010111
0110101010101010010110101010101010101010110110111010101001101101101101101101010010101
11011010101010101001011010101010101010101011011011

Questions?Questions?

info@artefactual.cominfo@artefactual.com


